metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Methylpiperazinediium pentachloridoantimonate(III) monohydrate

Chao Shen-Tu,^a Hai Yan Li,^b Xin Ju Ma,^b Wei Huang^b and Zhi Min Jin^b*

^aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and ^bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: apharm@sina.com

Received 6 November 2007; accepted 28 November 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.054; data-to-parameter ratio = 20.0.

The asymmetric unit of the title compound, $(C_5H_{14}N_2)$ -[SbCl₅]·H₂O, consists of an *N*-methylpiperazinediium cation, a pentachloridoantimonate anion with the Sb^{III} ion in a slightly distorted square-pyramidal coordination environment, and one solvent water molecule. The crystal structure is stabilized by intermolecular N-H···Cl, O-H···Cl and N-H···O hydrogen bonds.

Related literature

For related literature, see: Baker & Williams (1978); Bujak & Zaleski (1999); Clemente & Marzotto (2003); Feng *et al.* (2007); Knodler *et al.* (1988); Linden *et al.* (1999); Marsh (1995).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{5}{\rm H}_{14}{\rm N}_{2})[{\rm SbCl}_{5}]{\cdot}{\rm H}_{2}{\rm O} \\ M_{r} = 419.20 \\ {\rm Monoclinic}, \ P2_{1}/c \\ a = 9.600 \ (4) \ {\rm \mathring{A}} \\ b = 7.934 \ (3) \ {\rm \mathring{A}} \\ c = 19.966 \ (6) \ {\rm \mathring{A}} \\ \beta = 106.765 \ (16)^{\circ} \end{array}$

$V = 1456.1 (9) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 2.79 \text{ mm}^{-1}$
T = 273 (2) K
$0.33 \times 0.18 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.460, T_{max} = 0.696$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	129 parameters
$wR(F^2) = 0.054$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
2577 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

7167 measured reflections

 $R_{\rm int} = 0.021$

2577 independent reflections

2400 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

2.4110 (10)	Sb1-Cl4	2.7446 (11)
2.4623 (10)	Sb1-Cl5	2.9112 (11)
2.5538 (11)		
89.29 (4)	Cl1-Sb1-Cl4	174.79 (3)
90.76 (4)	Cl5-Sb1-Cl1	92.15(4)
93.67 (4)	Cl5-Sb1-Cl2	84.50(4)
91.71 (4)	Cl5-Sb1-Cl3	171.54(4)
90.95 (4)	Cl5-Sb1-Cl4	83.52(4)
	2.4110 (10) 2.4623 (10) 2.5538 (11) 89.29 (4) 90.76 (4) 93.67 (4) 91.71 (4) 90.95 (4)	$\begin{array}{cccc} 2.4110 \ (10) & Sb1-Cl4 \\ 2.4623 \ (10) & Sb1-Cl5 \\ 2.5538 \ (11) & & & \\ $

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1F \cdot \cdot \cdot Cl1^i$	0.82	2.57	3.346 (4)	159
$O1 - H1G \cdot \cdot \cdot Cl4$	0.82	2.51	3.223 (5)	147
$N1 - H1A \cdots Cl5^{ii}$	0.90	2.43	3.179 (4)	141
$N1 - H1B \cdots O1^{iii}$	0.90	1.91	2.801 (5)	168
$N2-H2\cdots Cl5$	0.91	2.28	3.133 (5)	157

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2556).

References

Baker, W. A. & Williams, D. E. (1978). Acta Cryst. B34, 1111-1116.

- Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.
- Clemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43-50.
- Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.
- Knodler, R., Ensinger, U., Schwarz, W. & Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208–218.
- Linden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122–128.
- Marsh, R. E. (1995). Acta Cryst. B51, 897-907.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, m146 [doi:10.1107/S1600536807064161]

N-Methylpiperazinediium pentachloridoantimonate(III) monohydrate

C. Shen-Tu, H. Y. Li, X. J. Ma, W. Huang and Z. M. Jin

Comment

Halogenoantimonates constitute a group of salts in which a number of compounds have been reported (*e.g.* Feng *et al.*, 2007; Bujak & Zaleski, 1999; Knodler *et al.*, 1988; Baker & Williams, 1978 and see: Clemente & Marzotto (2003); Marsh *et al.* (1995) for corrected space groups of some of these types of compounds). In our laboratory, a compound containing pentachloridoantimonate has been synthesized, its crystal structure is reported herein.

As shown in Fig. 1, an ion pair consisting of *N*-methylpiperazinium and $(SbCl_5)^{2+}$, and one water molecule comprise the formula unit. In the selected asymmetric unit The SbCl₅ anion is linked to *N*-methylpiperazinium and the water molecule by N—H…Cl and O—H…Cl hydrogen bonds.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4110 (10) to 2.9112 (11) Å. The Sb—Cl distances are slightly different to the values of 2.499 (4)–2.768 (4)Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl2) is *ca* 0.50 Å. The slight deformation of the square-pyramidal coordination environment may be attributed to the presence of relatively strong N—H···Cl hydrogen bonds. The atoms Cl1/Cl3/Cl4/Cl5 form the basal plane, while atom Cl2 is the apical atom. The structure of the anion is similar to that of the (TiCl₅)^{2–} anion (Linden *et al.*, 1999).

The six-membered piperazine ring is in chair conformation. The crystal structure is stabilized by N—H…Cl, O—H…Cl and N—H…O hydrogen bonds, and by weak C—H…Cl and C—H…O hydrogen bonds (Fig. 2).

Experimental

SbCl₃, *N*-methylpiperazine and 30% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 373 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were fromed, collected and washed with dilute aqueous HCl.

Refinement

H atoms were included in calculated positions with O—H = 0.82, N—H = 0.90 - 0.91 and C—H = 0.96-0.97 Å and included in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C, N, O)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The asymmetric unit of the title compound with atom labels, and 30% probability displacement ellipsoids. Hydrogen bonds are illustrated as dashed lines.

Fig. 2. The packing viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines.

N-Methylpiperazinediium pentachloridoantimonate(III) monohydrate

Crystal data	
$(C_5H_{14}N_2)[SbCl_5]$ ·H ₂ O	$F_{000} = 816$
$M_r = 419.20$	$D_{\rm x} = 1.912 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3256 reflections
a = 9.600 (4) Å	$\theta = 2.1 - 25.0^{\circ}$
b = 7.934 (3) Å	$\mu = 2.79 \text{ mm}^{-1}$
c = 19.966 (6) Å	T = 273 (2) K
$\beta = 106.765 \ (16)^{\circ}$	Block, brown
$V = 1456.1 (9) \text{ Å}^3$	$0.33\times0.18\times0.14~mm$
Z = 4	

Data collection

Bruker SMART CCD diffractometer	2577 independent reflections
Radiation source: fine-focus sealed tube	2400 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 273(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -11 \rightarrow 11$
$T_{\min} = 0.460, \ T_{\max} = 0.696$	$k = -9 \rightarrow 9$
7167 measured reflections	$l = -16 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0213P)^2 + 0.8984P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Extinction coefficient: 0.0050 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{iso}*/U_{eq}$
01	0.6846 (3)	1.0018 (3)	0.96651 (12)	0.0597 (6)
H1F	0.6811	1.0770	0.9378	0.072*
H1G	0.7246	0.9149	0.9607	0.072*
N1	0.8129 (3)	0.3813 (3)	0.60274 (12)	0.0430 (6)
H1A	0.8580	0.2814	0.6042	0.052*
H1B	0.7664	0.4045	0.5577	0.052*
N2	0.7418 (2)	0.6714 (3)	0.67442 (12)	0.0386 (5)
H2	0.7903	0.6427	0.7192	0.046*
C1	0.6710 (4)	0.8384 (4)	0.67596 (18)	0.0546 (8)
H1C	0.7433	0.9196	0.6988	0.082*
H1D	0.5999	0.8284	0.7011	0.082*
H1E	0.6242	0.8747	0.6290	0.082*
C2	0.9227 (3)	0.5143 (4)	0.63140 (17)	0.0432 (7)
H2A	0.9879	0.5239	0.6024	0.052*
H2B	0.9800	0.4835	0.6783	0.052*
C3	0.8497 (3)	0.6806 (4)	0.63348 (16)	0.0434 (7)
H3A	0.9230	0.7645	0.6544	0.052*
H3B	0.8006	0.7163	0.5861	0.052*
C4	0.6329 (3)	0.5373 (4)	0.64511 (18)	0.0490 (8)
H4A	0.5765	0.5684	0.5981	0.059*
H4B	0.5665	0.5278	0.6735	0.059*
C5	0.7048 (3)	0.3696 (4)	0.64308 (18)	0.0524 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H5A	0.7533	0.3331	0.6904	0.063*
H5B	0.6315	0.2864	0.6216	0.063*
Sb1	0.82184 (2)	0.48123 (2)	0.906548 (10)	0.03847 (9)
Cl1	0.71738 (9)	0.22687 (12)	0.83017 (4)	0.0586 (2)
Cl2	0.63328 (9)	0.65958 (12)	0.83543 (5)	0.0628 (2)
C13	0.67147 (9)	0.43460 (13)	0.98606 (5)	0.0607 (2)
Cl4	0.95679 (9)	0.75059 (10)	0.98509 (4)	0.0497 (2)
C15	0.98660 (8)	0.58815 (10)	0.81238 (4)	0.04343 (18)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0592 (15)	0.0667 (16)	0.0495 (14)	0.0137 (11)	0.0096 (12)	0.0028 (11)
N1	0.0458 (14)	0.0450 (14)	0.0374 (13)	0.0000 (11)	0.0106 (11)	-0.0041 (11)
N2	0.0367 (13)	0.0475 (14)	0.0324 (13)	0.0034 (11)	0.0114 (10)	0.0027 (11)
C1	0.053 (2)	0.0537 (19)	0.061 (2)	0.0157 (16)	0.0214 (17)	0.0051 (17)
C2	0.0366 (16)	0.0524 (18)	0.0428 (18)	-0.0024 (13)	0.0150 (14)	-0.0043 (14)
C3	0.0448 (17)	0.0477 (17)	0.0432 (17)	-0.0071 (14)	0.0213 (14)	-0.0033 (14)
C4	0.0324 (15)	0.063 (2)	0.052 (2)	-0.0043 (14)	0.0140 (14)	-0.0037 (16)
C5	0.0505 (19)	0.0527 (19)	0.059 (2)	-0.0117 (15)	0.0233 (16)	-0.0005 (17)
Sb1	0.03744 (13)	0.04726 (14)	0.03172 (13)	0.00487 (8)	0.01155 (9)	0.00274 (8)
Cl1	0.0575 (5)	0.0664 (5)	0.0521 (5)	-0.0089 (4)	0.0163 (4)	-0.0123 (4)
Cl2	0.0541 (5)	0.0779 (6)	0.0553 (5)	0.0234 (4)	0.0140 (4)	0.0178 (4)
Cl3	0.0572 (5)	0.0802 (6)	0.0548 (5)	0.0108 (4)	0.0323 (4)	0.0108 (5)
Cl4	0.0565 (5)	0.0523 (4)	0.0457 (4)	0.0030 (4)	0.0232 (4)	-0.0021 (4)
C15	0.0432 (4)	0.0520 (4)	0.0346 (4)	0.0007 (3)	0.0104 (3)	-0.0005(3)

Geometric parameters (Å, °)

0.8219	C2—H2A	0.9700
0.8128	C2—H2B	0.9700
1.485 (4)	С3—НЗА	0.9700
1.488 (4)	С3—Н3В	0.9700
0.9000	C4—C5	1.505 (4)
0.9000	C4—H4A	0.9700
1.488 (4)	C4—H4B	0.9700
1.493 (4)	С5—Н5А	0.9700
1.496 (3)	С5—Н5В	0.9700
0.9100	Sb1—Cl2	2.4110 (10)
0.9600	Sb1—Cl3	2.4623 (10)
0.9600	Sb1—Cl1	2.5538 (11)
0.9600	Sb1—Cl4	2.7446 (11)
1.500 (4)	Sb1—Cl5	2.9112 (11)
116.3	С2—С3—НЗА	109.2
111.3 (2)	N2—C3—H3B	109.2
109.4	С2—С3—Н3В	109.2
109.4	НЗА—СЗ—НЗВ	107.9
109.4	N2—C4—C5	111.5 (2)
	0.8219 0.8128 1.485 (4) 1.488 (4) 0.9000 0.9000 1.488 (4) 1.493 (4) 1.496 (3) 0.9100 0.9600 0.9600 0.9600 1.500 (4) 116.3 111.3 (2) 109.4 109.4	0.8219 $C2-H2A$ 0.8128 $C2-H2B$ 1.485 (4) $C3-H3A$ 1.485 (4) $C3-H3B$ 0.9000 $C4-C5$ 0.9000 $C4-H4A$ 1.488 (4) $C4-H4B$ 1.493 (4) $C5-H5A$ 1.496 (3) $C5-H5B$ 0.9100 $Sb1-C12$ 0.9600 $Sb1-C13$ 0.9600 $Sb1-C14$ 1.500 (4) $Sb1-C15$ 116.3 $C2-C3-H3A$ 111.3 (2) $N2-C3-H3B$ 109.4 $H3A-C3-H3B$ 109.4 $N2-C4-C5$

C5—N1—H1B	109.4	N2—C4—H4A	109.3
H1A—N1—H1B	108.0	C5—C4—H4A	109.3
C4—N2—C1	111.7 (2)	N2—C4—H4B	109.3
C4—N2—C3	109.8 (2)	C5—C4—H4B	109.3
C1—N2—C3	111.1 (2)	H4A—C4—H4B	108.0
C4—N2—H2	108.0	N1—C5—C4	110.9 (3)
C1—N2—H2	108.0	N1—C5—H5A	109.5
C3—N2—H2	108.0	С4—С5—Н5А	109.5
N2—C1—H1C	109.5	N1—C5—H5B	109.5
N2—C1—H1D	109.5	C4—C5—H5B	109.5
H1C—C1—H1D	109.5	H5A—C5—H5B	108.0
N2—C1—H1E	109.5	Cl2—Sb1—Cl3	89.29 (4)
H1C—C1—H1E	109.5	Cl2—Sb1—Cl1	90.76 (4)
H1D—C1—H1E	109.5	Cl3—Sb1—Cl1	93.67 (4)
N1—C2—C3	110.5 (2)	Cl2—Sb1—Cl4	91.71 (4)
N1—C2—H2A	109.5	Cl3—Sb1—Cl4	90.95 (4)
C3—C2—H2A	109.5	Cl1—Sb1—Cl4	174.79 (3)
N1—C2—H2B	109.5	Cl5—Sb1—Cl1	92.15 (4)
С3—С2—Н2В	109.5	Cl5—Sb1—Cl2	84.50 (4)
H2A—C2—H2B	108.1	Cl5—Sb1—Cl3	171.54 (4)
N2—C3—C2	112.0 (2)	Cl5—Sb1—Cl4	83.52 (4)
N2—C3—H3A	109.2		
C5—N1—C2—C3	-55.7 (3)	C1—N2—C4—C5	179.5 (3)
C4—N2—C3—C2	-56.1 (3)	C3—N2—C4—C5	55.8 (3)
C1—N2—C3—C2	179.8 (3)	C2—N1—C5—C4	55.9 (3)
N1—C2—C3—N2	56.2 (3)	N2-C4-C5-N1	-56.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1F…Cl1 ⁱ	0.82	2.57	3.346 (4)	159
O1—H1G···Cl4	0.82	2.51	3.223 (5)	147
N1—H1A····Cl5 ⁱⁱ	0.90	2.43	3.179 (4)	141
N1—H1B…O1 ⁱⁱⁱ	0.90	1.91	2.801 (5)	168
N2—H2…Cl5	0.91	2.28	3.133 (5)	157
Symmetry codes: (i) $r_{1} + 1_{2} = (ii) - r + 2_{1} = -r + 2_{2} = $	$\frac{1}{2} = \frac{-\pi + 3}{2}$ (iii) $\pi = \frac{-\pi + 3}{2}$	$\frac{2}{2} = \frac{1}{2}$		

Symmetry codes: (i) x, y+1, z; (ii) -x+2, y-1/2, -z+3/2; (iii) x, -y+3/2, z-1/2.

Fig. 2